
UI Design and
Interaction Guide
for Windows Phone 7

7

July 2010
Version 2.0

UI Design and
Interaction Guide
for Windows Phone 7

July 2010
Version 2.0

This is pre-release documentation and is subject to change in future releases.

This document supports a preliminary release of a software product that
may be changed substantially prior to final commercial release. This docu-
ment is provided for informational purposes only and Microsoft makes
no warranties, either express or implied, in this document. Information in
this document, including URL and other Internet Web site references, is
subject to change without notice. The entire risk of the use or the results
from the use of this document remains with the user. Unless otherwise
noted, the companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in examples herein
are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended
or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights,
or other intellectual property rights covering subject matter in this docu-
ment. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license
to these patents, trademarks, copyrights, or other intellectual property.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft Bing, Expression, Expression Blend, Internet Explorer, MSDN,
MSN, Outlook, PlayReady, Silverlight, Visual Basic, Visual C#, Visual Studio,
Windows, Windows Azure, Windows Live, Windows Vista, Xbox, Xbox
360, Xbox LIVE, XNA, and Zune are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

The Windows Phone 7 design philosophy 8
The Windows Phone 7 human/computer
interface 14
A note on units: pixels vs millimeters 16
A note on game UI design 18
Visual design resources and feedback 20
Globalization and localization
considerations 22
User interface framework 24
 Start 26
 Application bar 30
 Application bar icons 32
 Application bar menu 36
 Screen orientations 38
 Fonts 40
 Incoming phone calls 42
 Push notifications 44
 Tiles and tile notification 46
 Toast notifications 48
 Raw notifications 50
 Navigation, frames and pages 52
 Page title 56
 Progress indicator 58
 Scroller 60
 Themes 62
 Screen transitions and animations 64
 System and system application settings 66

 Application settings 68
Input methods 70

Touch input 72
 Supported touch gestures 78

Tap 80
Double tap 82
Pan 84
Flick 86
Pinch and stretch 88
Touch and hold 90

 Four touch points 92
On-screen keyboard 94
Hardware keyboard 98
Microphone 102
Phone hardware buttons 104

 Start button 106
 Search button 108
 Back button 110
 Power button 112
 Volume buttons 114
 Camera button 116
 Sensors 118
 Accelerometer 120
 A-GPS 122
 Proximity sensor 124
 Camera 126
 Compass 128

 Light sensor 130
Output methods 132
FM radio 134
Windows phone application interface
controls 136

Border 138
Push button 140
Canvas 142
Check box 144
Content control 146
Content presenter 148
Grid 150
Hyperlink 152
Image 154
InkPresenter 156
ListBox 158
MediaElement 160
Multi scale image 162
Panorama 164
Password box 172
Pivot 174
Progress bar 176
Radio button 178
Scroll viewer 180
Slider 182
Stack panel 184
Text block 186

Text box 188
User interface text guidelines 190

Text guidelines – voice and tone 192
Text guidelines – capitalization 194
Text guidelines – punctuation 196

Miscellaneous 198

8

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

9

Windows® Phone 7 is for Life Maximizers, people who are busy personally
and professionally, constantly juggling priorities, and who value technol-
ogy as a means to an end, a way to get things done.

They do not want to feel overwhelmed because they have priorities to
balance as they grow personally and professionally, all the while living life
to its fullest.

Applications should embody the three Red Threads of Windows Phone 7:

 • Personal – your day, your way

 • Relevant – your people, your location

 • Connected – your stuff, your peace of mind

Every application should connect to at least one of these threads. Cre-
ate applications that can be personalized by humanizing them to display
people whom the users know or places that users want to go to, and
make it easy to share information across the web and beyond.

Build authentic experiences.

The Windows Phone 7 design philosophy

10

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

11

The Windows Phone OS 7 User Interface (UI) is based on a design that is
internally named Metro, and echoes the visual language of airport and
metro system signage in its design and typeface. The goal is to create
contextual relevance through content – the user’s own content – so that
using the phone is a personal experience. Metro design interfaces embody
harmonious, functional, and attractive visual elements that encourage play-
ful exploration so that the user feels a sense of wonder and excitement. A
clear, straightforward design not only makes an application legible, it also
encourages usage and can lead to delight.

The Metro design was developed using the five following principles:

 1) Clean, light, open, and fast: It is visually distinctive, contains
 ample white space, reduces clutter and elevates typography as
 a key design element.

 2) Content, not chrome: It accentuates focus on the content that
 the user cares most about, making the product simple and ap
 proachable for everyone.

 3) Integrated hardware and software: Hardware and software
 blend into each other and creates a seamless user experience from
 single-button access to Search, Start, Back and the camera to
 on-board sensor integration..

 4) World-class motion: The Windows Phone 7 touch and gesture
 experiences on capacitive screens are consistent with Windows 7
 on the desktop and include hardware-accelerated animations and
 transitions to enhance the user’s experience at every turn.

 5) Soulful and alive: A personalized, automatically updated view
 into the information that matters most to the user is enabled and
 brings to life a cinematic photo and video experience by having
 a fully integrated Zune media player experience.

These design principles are based around the concept that UI elements
should be authentically digital and embody harmonious, functional, and
attractive visual elements. Applications should engage users by promoting
navigation, exploration, and exciting visuals in their design.

The Windows Phone 7 design philosophy

12

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

13The Windows Phone 7 design philosophy

Developers should use digital metaphors where natural and
appropriate and should not necessarily try to mimic real world
interaction if it is not appropriate. If it is, the UI should look and
feel great even though the UI objects only visually imitate and
mimic analog manipulation behaviors. The Windows Phone
Developer Tools provides a collection of Metro-inspired Silver-
light controls for use in applications.

Microsoft highly recommends that Windows Phone 7 develop-
ers adopt the Metro design style for their applications. This
guide provides the design knowledge, fundamentals, and
guidance to do so. Although requirements and implementa-
tions will vary from application to application, utilizing Metro
styled elements will create a more consistent and fluid overall
UI experience for users.

This guide also details the methods of user interaction that can
be used by a Windows Phone 7 application, including standard
input, functionality within the UI framework, and the Metro-
inspired Silverlight® and system-based controls. Diverging
from the Windows Phone 7 interaction model is generally not
allowed, but developers can gain a deeper understanding of
the hardware and software interaction elements that are avail-
able as a part of the development platform, and those that are
customizable.

14

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

15

Usability and the UI should be
a primary design goal in every
application for Windows Phone 7,
not an afterthought.

As developers create applications,
they should place special emphasis
throughout to ensure that layouts,
pictures, visual elements and touch-
based controls fit this UI paradigm.

Celebrate and elevate the content to
be the experience by using the UI to
create awesome, unique applications
that draw people in and encourage
touch.

The first computing devices were manual objects that required touch to
operate them. The interfaces were the stones of an abacus or the dials
on a difference engine. The information was simply seen as the state of
the device. As electronic computers were birthed, input methods rapidly
evolved from switches to keyboard and mouse, and output methods from
silent, blinking lights to high-definition displays with stereo sound. This
transition exponentially increased what could be done with computers,
but ironically made them much harder to use because the only way to
manipulate them or their data was through an interface that was only
a proxy to the computing event hidden away inside a case.

While a child can play with an abacus and intuitively learn how to operate
it through exploration and play, the same cannot be said for computing
devices that do not have a touch component.

The Windows Phone 7 UI is designed around touch interaction, offer-
ing full navigation using a combination of finger gesture movements.
Knowledge about interacting with layouts should be inherently obvious.
There are no complex key chords or arcane commands to memorize, and
the keyboard’s role is to input text. People intuitively tap, flick, pan, and
otherwise touch and manipulate content directly since the content is the
interface.

With A-GPS functionality, sensors such as an accelerometer, and
a vibration unit, the UI can be extended beyond the surface of the phone
to include where it is in the world, what orientation it is at, and how it feels
– the phone itself is the UI.

The Windows Phone 7 human/computer interface

16

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

17

This is pre-release documentation and is subject to change in future releases.

A note on units: pixels vs millimeters

If developers or designers require
precise millimeter sizing for UI
elements, consult original equipment
manufacturers display specifications
for the proper conversion factor to go
from pixels to millimeters.

All Windows Phone 7 phones will have WVGA screens at 800 x 480 pixel
resolution, no matter the screen size. Most of the measurement units
in this guide are expressed in pixels but in certain cases, usually around
touch target size, measurements may be expressed in millimeters.

Since these units are not directly convertible without knowing the pixels
per millimeter of a given screen, designers and developers who require
fine-grained millimeter positioning or sizing of elements for a given screen
size will need to refer to original equipment manufacturers display specifi-
cations as there is no method to determine this programmatically.

All of the controls and UI elements within the Windows Phone Developer
Tools are sized to support all possible screen sizes for Windows Phone
and adhere to minimum millimeter touch targets regardless of the screen
size.

18

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

19

This is pre-release documentation and is subject to change in future releases.

A note on game UI design

For full-screen games, developers are
free to implement whatever in-game
UI elements they see fit. For games
that appear within the Windows Phone
page frame, developers should follow
the relevant UI guidance in the rest of
this document.

Games are naturally immersive environments and their UIs should flex to
accommodate the needs of the game.

By creating games that are designed from the beginning to use a multitouch
screen, games will make the most of the primary input device of the phone,
and control systems will feel natural to Windows Phone users. Though there
are hardware buttons on the device, only the Back button is available to the
game, and Back should only be used for the specific purpose of pausing and
exiting the game.

Think about what types of control schemes fit well with a multitouch device,
and break away from simulating traditional controls, such as thumbsticks as
they take away useful space from the gameplay area. Instead, use gestures,
such as point, stretch, shrink, flick, and turn as user input instead. Allow play-
ers to draw paths on the screen to direct units and issue commands; allow
them to select groups of units by stretching an on-screen rectangle around
them. Allow players to navigate by dragging the landscape with a swipe
gesture, or to rotate the view by turning it with two fingers. There are many
possibilities for game control using touch, and by choosing a scheme that
seems natural and intuitive to gamers, you’ll provide the best experience on
Windows Phone.

20

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

21

This is pre-release documentation and is subject to change in future releases.

Visual design resources and feedback

To help designers and developers create high-fidelity visual mockups of
applications that are true to the Metro design, Microsoft has created two
visual design resources for inspiration and project work.

The first is the Windows Phone Design System – Codename Metro,
a PDF book that visually explains the inspiration behind the Metro design
and puts a face to the life maximizers the phone was designed for.

The second is the Windows Phone Design Templates, layered Photo-
shop template files for controls that ship as a part of the Windows Phone
Developer Tools and can be used to create pixel-perfect application
layouts to guide development or pitch an idea. The design templates also
include examples of controls that are a part of Windows Phone OS 7.0,
but are not available as a part of the Windows Phone Developer Tools.
These additional templates are included to help designers and developers
maintain a consistent look and feel across applications for system controls
that developers wish to mimic.

The above resources and links to programming topics related to the UI
elements discussed in this guide can be accessed at http://go.microsoft.
com/fwlink/?LinkID=190696.

Microsoft values feedback on this guide and the Visual Design Resources
we have made available to help developers and designers create beautiful
Windows Phone 7 applications. If you have suggestions or feedback about
these resources, please email us at wp7des@microsoft.com. We may not
be able to respond to every email, but we will consider incorporating your
feedback into the next versions of the resources.

22

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

23

This is pre-release documentation and is subject to change in future releases.

Globalization and localization considerations

Windows Phone 7 will be available in a number of languages and regions
around the world. Developers who are interested in selling their applica-
tions to a global market should pay particular attention to making sure
that their applications are world-ready by following best practices around
designing the application UI to support varying text string lengths, date
formats, and be aware of cultural sensitivities around use of color and
images, and geopolitical issues. MSDN online, http://msdn.microsoft.com,
has a variety of topics that detail these best practices.

Provide at least 40% buffer space for
localized strings.

Image Source: NASA’s Earth Observatory

24

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

25

This is pre-release documentation and is subject to change in future releases.

User interface framework

The Windows Phone 7 user interface framework provides consistent
system objects, events, and interactions for developers and designers
to create beautiful, predictable application experiences for the end user.

This section examines each piece of the framework and discusses how
they can be used or accommodated within application user interfaces.

26

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

27

This is pre-release documentation and is subject to change in future releases.

Start

Start is a reserved space and only
users can place tiles in this area.
Windows Phones come with pre-placed
tiles installed by Microsoft, phone
manufacturers, and phone service
providers.

Start is the likely to be the most
viewed phone interface by users;
therefore, developers and designers
should carefully consider the potential
that users may pin and display the
Application Tile for their application in
Start.

For more information, see the
Application Tiles and Tile Notifications
and Start Button sections.

Start is the beginning of the Windows Phone 7 experience for users after
they power on their phone. Start displays application Tiles that users
have pinned and placed in a position of their choosing for quick launch.
Pressing the Start Button on the phone always returns a user to Start, no
matter what application is running.

Tiles that use the Tile Notification feature can update the Tile graphic or
title text, or increment a counter, enabling users to create a personalized
Start experience. Examples include displaying if it is their turn in a game,
the weather, or how many email messages they have received.

Start is always presented in portrait view.

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

28 29

The Status Bar is system-reserved and
cannot be modified.

It can be hidden, but many users view
the system clock as an essential feature
so think carefully before hiding it.

Status bar

The Status Bar is one of the two primary components of Windows Phone
OS 7.0 chrome. The Application Bar is the other.

It is an indicator bar that displays system-level status information in a
simple and clean presentation in a reserved space in the application work-
space. It automatically updates to provide different notifications and keeps
users aware of system-level status by displaying the following information
(in order from left to right):

 1) Signal strength

 2) Data connection

 3) Call forwarding

 4) Roaming

 5) Wireless network signal strength

 6) Bluetooth status

 7) Ringer mode

 8) Input status

 9) Battery power level

 10) System clock

By default, only the system clock is always visible. If a user double taps in
the Status Bar area, all other relevant indicators slide into view for approxi-
mately eight seconds before sliding out of view.

The system clock is 32 pixels high in portrait mode and 72 pixels wide
in landscape mode. It always extends to the edge of the screen and is
opaque in appearance.

30

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

31

This is pre-release documentation and is subject to change in future releases.

30 31

Use icon buttons for the primary, most-
used actions in the application. Do not
use four icons just to use them. Less is
more in this space.

Some actions are difficult to clearly
convey with an icon. Place it in the
Application Bar Menu instead.

For guidelines about icon button sizing,
color, formatting, and text hints, see
the Application Bar Icons topic. For
guidelines about the Application Bar
Menu, see the Application Bar Menu
topic.

No text-only buttons are permitted.

Place tasks that are not frequently
accessed in the Application Bar Menu.

Application Bar Menu item text will
run off the screen if it is too long. The
recommended maximum length for the
text of a menu item is between 14 to
20 characters. Again, less is more in this
space.

Use the user-defined system theme
color unless there is a compelling
reason to override it. Using a custom
color can affect the display quality
of the button icons, create unusual
visual effects in menu animations,
and negatively influence power
consumption on some display types.

The opacity of the Application Bar
can be adjusted finely, but it is
recommended that you use only
opacity values of 0, .5, and 1. If the
opacity is set to less than 1, the
Application Bar will overlay the UI. If
the opacity is set to 1, the displayed
page size will change.

Application bar

The Application Bar provides a place for developers to display up to four
of the most common application tasks and views as icon buttons.

The Application Bar provides a view that displays icon buttons with text
hints and an optional context menu when a user taps the visual indica-
tor of sequential dots or flicks up the Application Bar. This view can be
dismissed by tapping outside of the menu area or on the dots, using the
back button, or selecting a menu item or Application Bar Icon.

The Application Bar always stays on the same edge of the display as the
Steering Buttons (Back, Start, and Search) and extends the full width of the
screen in portrait or landscape mode. Icon buttons will rotate to align with
the three phone orientations.

Application Bar buttons can be displayed in an enabled or disabled state.
An example of a disabled button would be a delete button in read-only
scenarios.

The application bar height in portrait mode and width in landscape mode
is fixed at 72 pixels and cannot be modified. It can be set to be displayed
or hidden.

32

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

33

This is pre-release documentation and is subject to change in future releases.

Use icon buttons for the primary, most-
used actions in an application. Do not
use four icons just to use them. Less is
more in this space.

Some actions are difficult to clearly
convey with an icon. Present those
actions in the Application Bar Menu
instead. For more information about
the Application Bar Menu, see the
Application Bar topic.

Application Bar Icon images should
be 48 pixels by 48 pixels and have a
white foreground on a transparent
background using an alpha channel.
The Application Bar will colorize the
icon according to the current style
settings and colored icons can cause
this effect to display unpredictably.

Images that are sized at sizes other
than the recommended size will
be scaled to fit and can potentially
lower the overall image quality of the
Application Bar Icon.

The circle that is displayed on each icon
button is drawn by the Application
Bar and should not be included in the
source image.

Application bar icons

Application Bar Icons should be clear, understandable, and leverage real-
world metaphors that are familiar to users.

The best icons have simple geometry and limit the amount of fine detail.

Icon text hints are displayed when users display the Application Bar Menu.

Window Mobile 7 Series
Basic Core Icons Vectors

NEW ADD MINUS CHECK

CLOSE CANCEL SYNC REFRESH

QUESTION MARK EXCLAMATION BACK NEXT

SEARCH DELETE SAVE FOLDER

VIDEO CAMERA E-MAIL SETTINGS

FAVORITES ADD TO FAVORITES DOWNLOAD UPLOAD

SHARE EDIT OVERFLOW DOTS

PLAY PAUSE PREVIOUS/REWIND NEXT/FASTFORWARD

34

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

35

This is pre-release documentation and is subject to change in future releases.

Use the user-defined system theme
color unless there is a compelling
reason to override it. Using a custom
color can affect the display quality
of the button icons, create unusual
visual effects in menu animations,
and negatively influence power
consumption on some display types.

Buttons must have an icon and must
have a text hint. Text hints should be
short and provide context for what
the button does and do not need
to be fully descriptive. An example
would be a button that flips an
image horizontally. Instead of “flip
horizontally”, “flip” would be sufficient.

For more information, see the
Application Bar and Application Bar
Menu topic.

A set of 64 Application Bar Icons, 32
dark and 32 light in PNG format, are
installed as a part of the Windows
Phone Developer Tools Beta at C:\
Program Files\Microsoft SDKs\
Windows Phone\v7.0\Icons. Only the
white icons should be used in the
Application Bar.

Application bar icons

Window Mobile 7 Series
Basic Core Icons Vectors

NEW ADD MINUS CHECK

CLOSE CANCEL SYNC REFRESH

QUESTION MARK EXCLAMATION BACK NEXT

SEARCH DELETE SAVE FOLDER

VIDEO CAMERA E-MAIL SETTINGS

FAVORITES ADD TO FAVORITES DOWNLOAD UPLOAD

SHARE EDIT OVERFLOW DOTS

PLAY PAUSE PREVIOUS/REWIND NEXT/FASTFORWARD

36

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

37

This is pre-release documentation and is subject to change in future releases.

A maximum of five menu items can be
displayed.

If no menu items are displayed, only
the icon text hints are displayed.

The Application Bar Menu will remain
on the screen until the user performs
an action.

The Application Bar Menu is an optional way for users to access specific
tasks from the Application Bar. The Application Bar Menu can be accessed
by tapping the visual indicator of sequential dots in the Application Bar or
by flicking the Application Bar up. This view can be dismissed by tapping
outside of the menu area or on the dots, using the back button, or select-
ing a menu item or Application Bar Icon.

To prevent the menu from scrolling, the number of items displayed in the
menu is limited to five.

Application bar menu

38

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

39

This is pre-release documentation and is subject to change in future releases.

Developers must add code to support
landscape views.

Applications cannot specify only left
or only right landscape views if they
support orientation changes – both
views must be supported.

Applications can define a static
orientation view using the Supported
Orientations property.

Applications that support text input
should assume a horizontal hardware
keyboard is present and support
landscape views.

Custom screen transition animation
effects are prohibited.

Windows Phone supports three views of screen orientation: portrait,
landscape left, and landscape right.

In portrait view, the page is vertically oriented with the steering buttons
appearing at the bottom of the phone and the height of the page is
greater than the width.

In either of the two landscape views, the Status Bar and Application Bar
remain on the side of the screen that has the Power and Start Button,
respectively. Landscape left has the Status Bar on the left and landscape
right has the Status Bar on the right.

The Status Bar grows from 32 pixel in portrait view to 72 pixel in both
landscape views, as measured from the side of the phone that has the
power button toward the center of the screen.

Portrait view is the default view for applications.

Start is always presented in portrait view.

The screen orientation will change based on the following actions:

If in portrait view, the screen orientation will change to either of the land-
scape views when a user slides out a horizontal hardware keyboard.

There is no programmatic way to switch orientations as the orientation
property is set to read-only but it is possible to set a fixed orientation.

Screen transition animation effects are played when screen rotation
occurs.

In-application landscape view-aware system components are the Status
Bar, Application Bar, Application Bar Menu, Volume/Ring/Vibrate Display,
Push Notifications, and Dialogs.

Screen orientations

Beginning Screen Orientation Rotating Ending Screen Orientation
Portrait 60 degrees left Landscape Left
Portrait 60 degrees right Landscape Right
Landscape Left 60 degrees right Portrait
Landscape Right 60 degrees left Portrait
Landscape Left or Right, flat on a table 30 degrees up Portrait

40

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

41

This is pre-release documentation and is subject to change in future releases.

Do not post Segoe WP fonts for
redistribution or package with an
application – this would violate the
license terms of the font.

Since Segoe is such an integral part of
the UI experience, use alternative fonts
sparingly in applications.

Avoid using font sizes that are smaller
than 15 points in size. Text that is
smaller than 15 points in size can be
hard to read and are likely too small
in size as touch targets without touch
target padding.

If using colorized fonts, use high-
contrast colors at smaller point sizes
to enhance readability and test against
both themes and all accent colors.

The Metro design principles center on a look that uses type prominently
throughout Windows Phone 7. Segoe WP is the system font and it is
a Unicode font. It has kern pairing, but does not have font hinting. It
is available in five styles:

1) Regular
2) Bold
3) Semi-bold
4) Semi-light
5) Black

A standard set of East Asian reading fonts that support Chinese standard,
Japanese, and Korean is also included.

Developers can embed their own fonts for use within their application,
but they will only be available for use within that application.

Fonts

Segoe WP Regular

abcdefghijklmnopqrstuvwxyz1234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Segoe WP Bold

abcdefghijklmnopqrstuvwxyz1234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Segoe WP Semi-bold

abcdefghijklmnopqrstuvwxyz1234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Segoe WP Semi-light

abcdefghijklmnopqrstuvwxyz1234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Segoe WP Black

abcdefghijklmnopqrstuvwxyz1234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ

42

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

43

This is pre-release documentation and is subject to change in future releases.

Incoming phone calls

Applications that expect user
interaction during a phone call should
have a minimum 75 pixel margin
on the edge of the device that has
the power button. No touchable UI
elements should be placed within that
margin.

When a user receives or places a phone call, the UI of the application
currently in view is completely obscured to display the dial pad or infor-
mation about the incoming call.

Once the call is connected or accepted, the call information flips to the
top of the screen and the application appears beneath it in a dimmed-
out view. Tapping in the dimmed-out area or pushing a hardware button
minimizes the call progress information into a 64 pixel bar in the portrait
mode and 75 pixels in the landscape mode. Tapping in the dimmed area
brings the obscured application to the foreground for user interaction.

If the keypad or additional call features are selected during a call, the
application currently in view is completely obscured.

Call progress information stays pinned to the same side of the phone as
the power button and the text does not rotate from the portrait orienta-
tion.

If the proximity sensor senses an object near it, it will power off the screen
to conserve battery. This happens when the phone is held to the ear or
may also happen if the phone is being held horizontally and a finger
obscures the sensor. The position of the proximity sensor will vary by
phone manufacturer.

44

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

45

This is pre-release documentation and is subject to change in future releases.

Push notifications

Use tile notifications for awareness-
only notifications.

Use toast notifications for action-
requested notifications, but use them
sparingly, as all applications have
access to toast notifications. Too many
toast notifications could annoy or
frustrate the user.

Use raw notifications for in-application
action-required notifications.

For application development, the Push Notification Service is designed to
provide a cloud service with a dedicated, resilient, and persistent channel
for pushing a notification to a mobile device. When a cloud service needs
to send a push notification to a device, it sends a notification request to
the Push Notification Service, which in turn routes the notification to the
application, or to the device as a tile, toast or raw notification.

There are three methods to display push notifications:

 1. Tile notifications – Awareness notifications inform users of
changes or events that may have occurred and are non-disruptive to the
user workflow. They appear in Start tiles. See Application Tiles and Tile
Notifications for more information.

 2. Toast notifications – Action-requested notifications are
system-wide notifications that do not disrupt the user workflow or require
intervention to resolve. An example of these notifications is when the user
receives a text message or instant message. These notifications appear at
the top of the screen and are displayed for 10 seconds before disappear-
ing. See Toast Notifications for more information.

 3. Raw notifications – Action-required in-application notifications
are fully controlled by an application and affect only that application.
These appear within an application. See Raw Notifications for more infor-
mation.

46

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

47

This is pre-release documentation and is subject to change in future releases.

Applications that do not incorporate a
tile image or title will display a generic,
system-defined icon and the name of
your project.

Tile images should be 173 pixels by 173
pixels at 256 dpi and in JPEG or PNG
formats. Images larger or smaller than
this in size will be cropped or scaled up
using the top left corner as the origin.
The default tile image will be scaled
down for display in the application list
unless a separate 63 pixels by 63 pixels
application image is included.

The tile title can be displayed without
using Tile Notifications.

If you use multiple tile images, they
should be visually consistent with each
other and have a recognizable theme
or style.

Developers cannot change the color,
font, font color, or size of the counter
display.

Be conservative in the use of Tile
Notifications – excessive use can
negatively impact battery life.

A tile is an easily recognizable visual shortcut for an application or its
content that users can set in an arbitrary location on the phone Start
experience. Other than pre-installed application tiles, only the user can
pin tiles to Start. There is no method for an application to determine if its
tile has been pinned to Start, so developers should not assume that it is.

Tiles can communicate information to the user by displaying an optional
counter that uses the system font, updating developer-provided tile
background images, or displaying an optional title that uses the system
font that is of a fixed size and color. Counter, background image and
title updates are controlled using the Tile Notification service. The accent
color for the counter is always the accent color that the user has selected.
Counter display is optional.

Double-width tiles are only available to Microsoft, phone manufacturers,
and mobile operators.

Tiles and tile notification

48

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

49

This is pre-release documentation and is subject to change in future releases.

Toast notifications

Applications must default to turn toast
notifications off.

Toast notifications should be personally
relevant and time critical to the user.

Toast notifications should primarily
be focused on peer-to-peer
communication.

Use the XNA Framework GamerServices
for turn-based or in-game
notifications.

A web service can generate a special kind of push notification known
as a toast notification, which displays as an opaque bar in the Accent
Color on the top of the screen for 10 seconds to be tapped on before
disappearing. If the notification is tapped, the application that sent the
notification will launch. The toast notification displays a scaled-down
version of the application icon in the left corner and two fields of text are
available, one bolded title and one normal sub-title. Text that is longer
than the display area will be truncated.

Examples would be notifications produced via an instant messaging client
or a peer-to-peer oriented application. Turn-based games should use the
XNA Framework GamerServices for notifications.

Be very conservative in the frequency and number of toast notifications
an application generates. As all applications can access this notification
channel, imagine every application on a user’s phone sending a toast
notification every time an event happened in the application – many
people might find this behavior to be very annoying and visually distract-
ing. Follow the guidance closely to prevent user notification overload.

50

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

51

This is pre-release documentation and is subject to change in future releases.

Raw notifications

Raw notifications are in-application, action-requested notifications. They
can be generated by the application itself or sent from a web service.
Web service raw notifications only appear within the specified application;
there is no system-wide way to display a raw notification.

52

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

53

This is pre-release documentation and is subject to change in future releases.

Navigation, frames and pages

Finding the right number of pages
for an application and defining the
navigational map may take some trial
and error. Mockup the pages and
navigational map of an application
and walk through them several times
before coding to minimize or eliminate
the need to add pages or change the
map later, when it will be much harder.

Review the Windows Phone Application
Interface Controls section to consider
how your application content will fit or
be displayed before creating your own
custom control for a page.

Do not display the Status Bar or
Application Bar when in full-screen
mode.

Windows Phone 7 applications are based on a Silverlight page model
where users can navigate forward through different pages (screens) of
content via links and backward using the Back Button. A goal of this
model is to ease the creation of view-based applications that fit naturally
into the Windows Phone 7 page navigation model.

The core elements of an application include a top-level container control
called a frame that displays pages. Only one frame is allowed per ap-
plication, but there is no limit to the number of pages. Windows Phone 7
provides frame and page classes to facilitate navigation to separate sec-
tions of content.

Pages hold discrete sections of content in applications and appear as
separate screens to the user. Developers can create as many different
pages and construct their UIs as needed to present content within an
application and then provide navigation to those pages from the frame
or page if desired. Simple applications may only require one page while
more complex ones may require many.

Developers can also implement a full-screen view where the Status Bar or
Application Bar can optionally be displayed, but this must be explicitly de-
fined using the visibility property, as the default is to not display them. The
best practice for a full-screen view is to not display either so that users can
focus on the content experience. Notifications and incoming calls are still
displayed in full-screen mode, even if the Status Bar and/or the Applica-
tion bar is hidden. Examples of full-screen UI implementations are
a screen animation that is embedded within an application.

The page navigation model is a spoke and hub system. This means that
unless developers explicitly add links to other pages within their applica-
tion, users must use the Back Button to navigate to a page that they wish
to view and that users always move forward through the pages. This is
similar to how a web browser displays and navigates web page history.

The system tracks each page a user has visited and places it in what is
called the back stack so that when a user pushes the Back Button, they
are served the last saved page in the back stack. There is no limit to the
number of pages that can be placed in the back stack.

The back stack, combined with the hub and spoke model of page

content

page control

frame control

54

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

55

This is pre-release documentation and is subject to change in future releases.

Navigation, frames and pages

navigation, means that a user navigating from page 1 (p1) to
page 2 (p2) to p1 to p2 to page 3 (p3) to p1 creates a back
stack of p1, p2, p1, p2, p3, p1. If the user modified content in
the second instance of p2 in the back stack, but navigates back
using the Back Button to the first instance of p2 in the back
stack, unless the page refreshes the data, previous changes will
not appear on that page, as it is a snapshot of how the user
saw that page at that point in navigation. For this reason, think
carefully about implementing page-to-page links or buttons
that could impact application navigation for the user and con-
sider if a page should be refreshed upon entry.

56

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

57

This is pre-release documentation and is subject to change in future releases.

Page title

Page Titles are optional. When
displayed, they do not scroll.

If Page Titles are displayed, reserve
the Page Title space in all pages of the
application for consistency so the user
does not experience differing window
sizes across the application.

If Page Titles are displayed, the title
should be the name of the application
or a specific descriptive line of text
relevant to the displayed data.

Although not an interactive control, the Page Title is used to clearly display
information for page contents. It appears in default Windows Phone
Developer Tools templates and is optional. Page titles are not actionable.

58

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

59

This is pre-release documentation and is subject to change in future releases.

Progress indicator

Developers who wish to mimic this
control should use the determinate
indicator for tasks such as downloading
content and the indeterminate for
tasks such as remote connections.

The Progress Indicator shows in-application activity related to an activity
or a series of events. This is a system-reserved control that is integrated
into the Status Bar and that can be displayed across multiple application
pages.

The progress indicator can be either determinate or indeterminate.
Determinate progress indicators have a beginning and ending point.
Indeterminate progress indicators continue until a task is finished.

See also the Progress Bar topic in the Windows Phone Application
Interface Controls section.

60

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

61

This is pre-release documentation and is subject to change in future releases.

Scroller

Page scrolling occurs when content on the screen exceeds the bounds
of the visible page and a user pans or flicks. When scrolling, visible scroll
indicators appear on the right side for vertical scrolling and along the
bottom for horizontal scrolling to indicate whether the content is longer
or wider than the page, and to represent the current position on the page.
After page scrolling ends, the scroll indicators fade from view after one
second has elapsed.

The scroll indicators are not user actionable and are an overlay to the
content beneath. Their primary function is to provide a hint to the user
about the page size.

scroll indicator
Appears when you

interact with the page

62

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

63

This is pre-release documentation and is subject to change in future releases.

Themes

Since users can choose between 20
Themes (22 if the mobile operator or
phone manufacturer adds an accent
color,) developers should consider
the possible color combinations if
they add colored elements to their
UI. Developers may wish to consult
with graphic designers for color
combination assistance.

Avoid using too much white
in applications, such as white
backgrounds, as this may have an
impact on battery life for devices that
have organic LED displays.

User-selected, system-wide Theming
cannot be modified; only Themes
within applications can be modified.

If the foreground or background color
of a control is explicitly set, verify
that the content is visible in both
dark and light themes. If the set color
is not visible, also explicitly set the
background or foreground color to
maintain contrast or choose a more
appropriate color.

A Theme is a user-selected combination of background and accent colors
that personalizes the visual elements on a Windows Phone for that user.
Only colors are part of a theme. Other elements such as fonts or control
sizing do not change.

There are two background colors, dark or light, and 10 accent colors,
magenta (FF0097), purple (A200FF), teal (00ABA9), lime (8CBF26), brown
(996600), pink (FF0097), orange (F09609), blue (1BA1E2), red (E51400)
and green (339933). Mobile operators or phone manufacturers may add
one additional system color. The default Theme is a dark background with
the blue accent color, but mobile operators or phone manufactures can
override this setting.

As a part of the Windows Phone Application Platform, applications auto-
matically take on the selected theme and ensure that system controls and
UI elements appear consistently across the platform to prevent a jarring,
unsettled user experience.

Developers do not have to adjust application controls to match the user
Theme, as these styles will be modified at runtime, but developers can
override the Theme within an application. For example, developers may
want to override the Theme of an application if they want to build an
application that matches a brand color or content consumed from a web
service. Developers can provide their own resources and override any
themed properties, but cannot turn off theming. Developers should be
cautious about using too much white in their applications, as this may
have an impact on battery life for devices that have organic LED displays.

METRO COLORS

METRO BLUE: 1ba1e2

METRO ORANGE: f09609

METRO GREEN: 339933

METRO RED: e51400

NEW VERIDIAN: 00aba9

NEW PINK: e671b8

NEW PURPLE: a200ff

NEW BROWN: 996600

NEW LIME: 8cbf26

NEW MAGENTA: ff0097

64

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

65

This is pre-release documentation and is subject to change in future releases.

Built-in screen transitions and
animations are system-reserved and
developers cannot access them but
may mimic them.

If developers want to implement
transitions or animations within their
application, they must use Silverlight or
XNA Framework to create them.

Windows Phone OS 7.0 has many built-in screen transitions and anima-
tions that create a sense of a “fluid” user interface. One example is the
application entry transition, where unrelated application tiles “flip” out of
the way, leaving the selected application tile alone for a moment before
it too “flips” to reveal the application user interface.

Screen transitions and animations

66

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

67

This is pre-release documentation and is subject to change in future releases.

System and system application settings

Developers should become familiar
with the system settings options and
consider how various user settings
could impact UI or application
behavior. For example, developers of
web service-connected applications
should consider application behavior
when the user puts the phone in
airplane mode.

Application settings must be
implemented within the application
itself.

System and System Application Settings are accessed via the App List and
tapping on the Settings icon. Users are presented with a Pivot to view set-
tings choices for the system and for applications that ship with the system.
From here, users can personalize the appearance and behavior of their
phone by performing activities such as setting the system Theme, joining
Wi-Fi networks, or changing the region and language used by the phone.

Changes to System and System Application Settings are immediately
implemented. In some cases, even though the change has happened
immediately, the user may not have feedback that the change has
occurred until an ongoing event is completed or when a future event
occurs. Examples would be joining a secure Wi-Fi network or changing
the frequency of alarms.

Developers do not have access to place application settings within the
System and System Application Settings and must implement application
settings pages within the application itself. See the Application Settings
topic for more information.

68

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

69

This is pre-release documentation and is subject to change in future releases.

Application settings

Immediately implement user-selected
Application Settings without a
confirming dialog box and provide a
feedback method to indicate that the
change has occurred.

Avoid creating Application Settings
that have more than 2 pages (screens).

Settings that require more than a
single screen should use overlying half
screens to avoid losing context when
the SIP Keyboard is displayed.

If a task cannot be undone, always
provide the user with an option to
cancel. Text entry is an example.

Actions that overwrite or delete
data, or are irreversable must have a
“Cancel” button.

When using additional screens with
commit and cancel buttons, clicking
those buttons should perform the
associated action and return the user to
the main settings screen.

To keep the heading of settings control
panels consistent, the heading for the
settings page should look as follows:

 SETTINGS

 <CPL Name/ Application Name>

Applications that fetch data over
the network must have an option to
disable data usage.

For applications that have several user-selectable settings, developers
should create a settings page within the application and model it after
the layout and behaviors in System and System Application Settings.

Changes to Application Settings should be immediately implemented. This
means that a “Done”, “OK”, or other confirming dialog is not needed. In
some cases, even though the change has happened immediately, the user
may not have feedback that the change has occurred until an ongoing
event is completed or a future event occurs. Examples would be joining
a secure Wi-Fi network or changing the frequency of alarms.

Keeping Application Settings brief and clear should be a design goal.
Complex, multi-page, multi-level Application Settings can frustrate or
confuse users into thinking that they have entered another application
entirely.

70

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

71

This is pre-release documentation and is subject to change in future releases.

Input methods

Windows Phone 7 applications can support multiple methods of input:

 • Touch

 • On-screen keyboard

 • Hardware keyboard

 • Microphone

 • Phone hardware buttons

 • Sensors

While not every feature of every input method is available to developers
since some are system-reserved, developers should consider each area
for applicability to the UI for their applications.

Additional topics in this guide provide greater detail for each input
method.

72

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

73

This is pre-release documentation and is subject to change in future releases.

Touch input

Do not use gestures as a shortcut to
a task, and only use a gesture in a
manner as it was intended. See the
Supported Touch Gestures topic for
gesture definitions.

All basic or common tasks should be
completed using a single finger.

Touch controls should respond to touch
immediately. A touch control that lags
or that seems slow when transitioning
will have a negative impact on the user
experience.

Provide immediate visual or auditory
feedback to indicate interaction
with the touch control. All actions
should have immediate and obvious
consequence by responding while the
gesture happens, not afterwards. A
bad example would be a user flicking a
photo and the movement occurs after
the gesture is completed.

For time consuming processes,
developers should elegantly provide
feedback to indicate that something is
happening by using content to indicate
progress, or consider using a progress
bar or raw notification as a last resort.
For example, show more and more of
the content as it is being downloaded.

Response to gestures should be
consistent across the phone and
within an application. Using the
touch controls in the Windows
Phone Developer Tools will help with
maintaining consistency as they have
built-in support for the touch gestures
discussed in this topic. If developers
create custom touch controls, they
should respond to gestures in a similar
manner.

Touch input is a core experience of Windows Phone 7 and has inherent
differences from traditional keyboard and mouse input systems. Designed
for natural and intuitive user interaction, touch input in Windows Phone
7 enables users to interact with application content such as a photo or a
web page. Touch input enables simple and consistent user touch gestures
that imitate real life behavior, such as panning on a photo to move it.
Single-touch gestures make interaction easier with one hand, but multi-
touch gestures are also available to provide more advanced gesture
functionality.

Application developers should strive to create unique and exciting experi-
ences that encourage the discovery of content through the use of touch
gestures. Users should enjoy the experience of navigating through the
steps of a task as well as the completion of the task itself. Touch gestures
should provide a delightful, more colorful, intuitive experience within ap-
plications

Touch delights the senses as the user gets to see the interaction match
the performance. The touch UI should always have aware and responsive
performance, just like how real world objects respond to touch immedi-
ately, and applications on Windows Phone 7 should as well, by performing
the action in real time and by providing immediate feedback that an event
or process is occurring. Users should not have to wait as it breaks their
immersion, flow, and concentration, especially as their gestures transition
from one to the other. For example, a pan may turn into a flick or a tap
can become a double tap, and the user should not be aware that the UI is
switching gesture support.

While this topic provides general touch guidance for customizing UI visual
elements, Microsoft recommends that developers use standard Metro-in-
spired touch controls that are available in the Windows Phone Developer
Tools and always follow the guidance when creating custom controls. Win-
dows Phone Developer Tool controls have been properly sized for touch
interaction based on the guidelines presented in this section. There are
cases where touch UI control sizing will or should vary from the guidance,
such as with games, depending on the needs of the application.

74

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

75

This is pre-release documentation and is subject to change in future releases.

Windows Phone 7 gestures align with
Windows desktop gestures. There
is some intentional variability due
to the differences in screen size and
the Windows desktop support of the
mouse. These differences are mostly
around editing shortcuts, which can
be potentially addressed by using
the on-screen keyboard. Applications
for Windows Phone 7 should try to
align with the gesture experience of
the corresponding Windows desktop
application.

Gesture extensibility is not supported.
Developers can only use the supported
gestures and replicate movement as
specified.

Every touch control should be able
to be comfortably touched with a
finger. This involves manipulating size,
spacing, location, and visuals to reduce
the difficulty in acquiring a target
through finger touch.

Touch targets should not be smaller
than 9 mm or 34 pixels square and
provide at least 2 mm or 8 pixels
between touchable controls. In
exceptional cases, controls can be
smaller but never more than 7 mm or
26 pixels square.

Touch targets should be larger
than 9mm when touch controls are
frequently touched, create a severe
error such as sending an incomplete
message, have a destructive
consequence such as deleting data,
frustrate the user such as navigating to
another screen accidentally, are within
3.5 mm of the edge of the screen, or
require sequential or multiple inputs
between adjacent touch controls.

There are three components to the touch UI:

 1) Touch target – the area that is defined to accept touch input
 and is not visible to the user

 2) Touch element – the visual indicator of the touch target that is
 visible to the user

 3) Touch control – a touch target that is combined with a touch
 element that the user touches

Touch targets should not be smaller than 9 mm or 34 pixels square and
provide at least 2 mm or 8 pixels between touchable controls. In excep-
tional cases, controls can be smaller but never more than 7 mm or 26
pixels square. The on-screen keyboard and hyperlinks in Windows Phone®
Internet Explorer® are an exception because they have differently sized hit
targets.

Touch targets should be larger than 9 mm when:

 • It is a frequently touched control

 • Touching it could create a severe error or have a destructive
 consequence

 • The user could become frustrated if they cannot touch it

 • It is close to the edge of the screen

 • It requires sequential or multiple inputs between adjacent touch
 controls.

For touch and non-touch UI elements that have special sizing or position-
ing constraints, layouts may need to be adjusted or additional application
pages may need to be created to accommodate the minimum touch target
sizes.

Touch input

76

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

77

This is pre-release documentation and is subject to change in future releases.

The touch target can be larger than the
touch element, but never be smaller
than it, and the touch element must
never be smaller than 60% of the touch
target.

Use oblong controls in vertically
constrained UIs, as these shapes are
easier to hit. The touch target height
can be as small as 7 mm as long as the
width is at least 20 mm.

Touch input

78

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

79

This is pre-release documentation and is subject to change in future releases.

A touch gesture involves performing a movement with single or multiple
fingers on a touch screen. The tapping of a UI element such as a push
button is an example of a touch gesture. Touch gestures are the primary
method for a user to interact with the Windows Phone UI.

The controls provided in the Windows Phone Developer tools are used as
touch interaction elements and are properly sized for touch interaction.

The following single and multi-touch gestures are supported in Windows
Phone 7:

Single-touch:

• Tap

• Double Tap

• Pan

• Flick

• Touch and Hold

Multi-touch:

• Pinch and Stretch

Supported touch gestures

80

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

81

This is pre-release documentation and is subject to change in future releases.

A tap is a single, brief touch on the screen within a bounded area and
back up again.

There are two behaviors associated with a tap gesture:

1. Finger down provides touch indication

2. Finger up executes the action

A tap also stops any type of content from moving on the screen.

Tap

82

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

83

This is pre-release documentation and is subject to change in future releases.

A double tap is two quick taps within a bounded area.

A double tap toggles between in and out zoom states of a control or an
application. The application determines its current zoomed state and will
zoom in or zoom out accordingly. The zoomed-in and zoomed-out states
are defined by the application.

Double tap

84

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

85

This is pre-release documentation and is subject to change in future releases.

A pan is a single finger placed down and moved across the screen in any
direction. The pan gesture ends when the finger is lifted from the screen.

There are two behaviors associated with a pan gesture:

1. Content can be moved through direct manipulation. It will stick to
and follow the movement of the finger. Controls or the application
can decide what panning direction to support. This movement can
be horizontal, vertical, or any other direction specified. If content is
moved to an in-between state, the content should snap back to the
closest state.

2. A pan can move or reorder a specific item. An item follows the
finger and drops in the new location when the finger is lifted.

Pan

86

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

87

This is pre-release documentation and is subject to change in future releases.

A flick is a single finger down moved rapidly in any direction and ends
with the finger up. A flick can follow a pan gesture.

A flick gesture moves content from one area to another area. The controls
or the application can be configured to support specific flicking directional
behavior. This can be horizontal, vertical, or another specified direction. If
horizontal or vertical paths are specified, movements in other directions
will be converted into vertical or horizontal movement.

Flick moves the whole canvas, but developers can specify individual
objects to be moved instead.

Flick

88

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

89

This is pre-release documentation and is subject to change in future releases.

A pinch and stretch is two fingers down within separate bounded areas
followed by the fingers moving closer together (pinch) or further apart
(stretch).

Pinch and stretch provides continuous zoom on content with the center
of the zoom located at the center of the two fingers.

Pinch and stretch

90

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

91

This is pre-release documentation and is subject to change in future releases.

The touch and hold gesture should
generally be used to display a context
menu or options page for an item.

Touch and hold is a single finger down within a bounded area for
a defined period of time.

Touch and hold

92

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

93

This is pre-release documentation and is subject to change in future releases.

Four touch points

Performance tune applications that
support more than two simultaneous
touch input points to ensure
application performance does not
suffer.

Windows Phone supports four simultaneous user touch input points to
enable unique application interactions. Simple examples would be game
or musical instrument applications.

Screen touches 7 mm or larger in diameter are treated as unique touches
when the edges of the touch are separated by 3.5mm or more, and all
gestures are supported.

Every touch point also adds additional processor load, so developers
implementing more than two simultaneous touch input points should be
aware of potential performance impacts. While Windows Phone supports
up to ten touch points, not all hardware screens will support more than
four touch points.

94

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

95

This is pre-release documentation and is subject to change in future releases.

On-screen keyboard

When the On-Screen Keyboard is
deployed in an application, it obscures
content behind it.

If text suggestions are enabled, they
are docked above the On-Screen
Keyboard and obscure content behind
it.

If a developer is using a multi-line
edit control, part of it may be hidden
behind the keyboard. A developer must
ensure that the line containing the
caret is always in view and above the
keyboard.

Developers should set an input scope
in edit fields to define the keyboard
type and enable the appropriate
typing aides. For example, if a
developer chooses the URL input
scope, a keyboard layout will be shown
featuring a .com key. To accomplish
this, you must set the input scope
property in your project for the text
box or edit control.

Only deploy the keyboard
automatically if the application page
has no more than two edit controls
and the first edit control is a single-line
edit box. Do not automatically deploy
the keyboard if the page has content
or controls that would be obscured
behind the keyboard.

Do not change the padding inside edit
controls or override automatically
placed margins of controls places
near the edge of the screen. Changing
these values can lead to a non-uniform
method to select edit controls by
touch.

The On-Screen Keyboard is for text input and opens by sliding up
automatically from the bottom of the screen when an editable control
becomes active. When a user taps outside of the edit control, scrolls a list,
or presses the Back Button, it closes by sliding down off the bottom of the
screen. If a phone has a Hardware Keyboard, (which is a phone manufac-
turer option,) and is deployed, the On-Screen Keyboard will automatically
close.

Windows Phone 7 supports only full alphabet layouts such as QWERTY,
AZERTY, and QWERTZ. 12/-20 key layouts are not supported.

The phone features several typing aids such as text suggestions that ap-
pear above the keyboard, auto-correction, and context-specific keyboard
layouts.

The On-Screen Keyboard is 336 pixels tall in portrait view and 256 pixels
tall in either landscape view. The text suggestion window is 65 pixels tall in
both screen orientations.

The developer can define if an edit control is active, and whether or not
to deploy the On-Screen Keyboard when a page is navigated to.

When an edit control is active, the system will automatically scroll the
editable control above the On-Screen Keyboard if it is a control from the
Windows Phone Developer Tools.

If the keyboard has an enter key and the current edit control is a single
line, pressing the enter key can either submit the data and close the key-
board or change focus to next edit control. If the edit control is multi-line,
pressing the enter key will add a new line.

96

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

97

This is pre-release documentation and is subject to change in future releases.

There are 8 different, context-specific, On-Screen Keyboard types that can
be used, depending upon the input scope desired:

Keyboard Type Layout
Default Standard QWERTY layout
Text Standard layout with ASCII based emoticons
Email Address Standard layout with .com and @ keys
Phone Number Typical 12-key layout
Web Address Standard layout with .com key and customized

Enter key
Maps Standard layout with a customized Enter key
Search Semi-transparent layout with a Search and

.com key
SMS Address Standard layout with easy access to phone

number layout

Developers cannot define their own keyboard types or modify existing
ones.

The Default, Text, and Maps keyboard types all automatically deploy with
the text suggestion window.

If an application takes up all or most of the screen area or has crowded
edit controls, it might be difficult for the user to tap outside of the control
to close the On-Screen Keyboard and view more content. The applica-
tion can automatically close the keyboard when the user tries to view the
content rather than type, such as when the user scrolls, when the active
edit control moves outside of the viewable area, or when the user presses
the Back Button. Another solution is to implement an edit view and a read
view and open or close the keyboard depending upon the view state.

On-screen keyboard

98

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

99

This is pre-release documentation and is subject to change in future releases.

Hardware keyboard

Hardware keys may not be used to
move focus, scroll lists, or navigate
maps or web pages.

A Hardware Keyboard is an optional component that phone manufactur-
ers may add. They may come available in designs such as a pull out bar,
a vertical slide configuration, or even a flip or swivel orientation.

Windows Phone 7 supports only full alphabet layouts such as QWERTY,
AZERTY, and QWERTZ. 12/-20 key layouts are not supported.

The Hardware Keyboard is only used for typing letters, accented letters,
numbers and symbols, and cannot be used to control the UI. The hard-
ware keyboard can include arrow keys that can move the caret within an
edit control. However, these arrow keys must not be used to move focus,
scroll lists, or navigate maps or web pages.

The following keys will always be available on the Hardware Keyboard:

 • Letters (A-Z), Enter, Space, Backspace, Shift, emoticon, SYM,
 period, and comma.

 • Numbers (0-9) as either a primary or secondary character.

 • Accent key for German, French, Italian, and Spanish keyboards.

The following keys are not supported or allowed on the Hardware Key-
board:

 • A directional pad or any other navigation specific hardware.

 • The “OK & Home” and the “Send & End” hardware soft keys.

 • The keys Delete, Insert, Control (CTRL), Alt, Caps Lock, Tab,
 page up and down, and escape (ESC).

 • The Start, Search, and Back Buttons as part of the keyboard.

The shift key allows for typing capital letters. There are 3 shift modes: On,
Off, and Lock (Caps Lock).

The emoticon key brings up the emoticons picker.

The accent key is used to type accented letters. When the accent key is
pressed, it adds an accent letter left of the caret. Multiple presses cycle

enter

space .,sym

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

1 2 3 4 5 6 7 8 9 0

äé symäé

@ # $ % & ()

-

\ /

^ [] { } < > € £ ¥

* + = ~- © ® ™

! ; : ‘ `“ ?caps

1 2 3 4 5 6 7 8 9 0

@ # $ % & ()

-

\ /

! ; : ‘ “ ?capscaps

 sym

enter

space .,sym

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

1 2 3 4 5 6 7 8 9 0

äé symäé

@ # $ % & ()

-

\ /

^ [] { } < > € £ ¥

* + = ~- © ® ™

! ; : ‘ `“ ?caps

1 2 3 4 5 6 7 8 9 0

@ # $ % & ()

-

\ /

! ; : ‘ “ ?capscaps

 sym

100

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

101

This is pre-release documentation and is subject to change in future releases.

through the available accents. The function key (FN) plus the accent key
cycles back to the previous accent. Pressing and holding the accent key
displays an accent picker.

Characters that are not available on the keyboard are accessible via a
symbol picker that is launched by pressing the symbol key (SYM). Press-
ing and holding the SYM key displays the language picker. FN and SYM
switches to the next language.

A Status Bar input indicator displays shift mode, FN mode, and active
language.

Keyboard keys can be overloaded. Pressing and holding a key or using the
FN key allows the user to access secondary functionality.

When the symbol picker, accent picker, or language picker is launched,
they are displayed at the bottom part of the screen. They disappear after
a selection is made or after one second has elapsed.

Applications can use an API to query if the Hardware Keyboard is available
or deployed and act accordingly.

When the Hardware Keyboard is deployed, the On-Screen Keyboard will
close. If the device has a fixed hardware keyboard, the On-Screen Key-
board will not be displayed.

Text suggestions are also available for the Hardware Keyboard.

Hardware keyboard

enter

space .,sym

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

enter

spacefn .,

q w e r t y u i o

a s d f g h j k

z x c v b n m

l

p

1 2 3 4 5 6 7 8 9 0

äé symäé

@ # $ % & ()

-

\ /

^ [] { } < > € £ ¥

* + = ~- © ® ™

! ; : ‘ `“ ?caps

1 2 3 4 5 6 7 8 9 0

@ # $ % & ()

-

\ /

! ; : ‘ “ ?capscaps

 sym

102

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

103

This is pre-release documentation and is subject to change in future releases.

The Windows Phone 7 microphone has a frequency range from 150 Hz to
7 kHz.

Microphone

104

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

105

This is pre-release documentation and is subject to change in future releases.

Phone hardware buttons

See specific Phone Hardware Button
topics for guidance on how each
button can affect the UI.

A Windows Phone has several hardware buttons positioned around the
device. Each button provides a unique function that may adjust or impact
a running application.

 1) Power/sleep

 2) Volume up and volume down

 3) Camera

 4) Back

 5) Start

 6) Search

The Back, Start, and Search buttons can optionally be implemented as
capacitive touch buttons by phone manufacturers.

1

2

3

54 6

106

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

107

This is pre-release documentation and is subject to change in future releases.

Developers do not have access to
modify the Start button behavior
and their applications should always
be prepared to receive an obscured
event to pause after the Start button is
pushed.

When a user presses the Start button, it will take them to Start in the
phone user interface. Applications will receive an obscured event to pause.

Start button

108

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

109

This is pre-release documentation and is subject to change in future releases.

Search button

Use the SearchTask Class to launch Bing
search from within an application.

The hardware Search Button will launch the Bing search experience for the
user to find content from anywhere on the device. The search experience
will vary depending on the context of the user. The Bing search experi-
ence can be launched from Start, the App List, system applications, and
third-party applications. From select system applications such as Outlook,
an in-application search can be launched.

Developers cannot replicate in-application search, but can mimic a Search
Button push to launch the Bing search using the SearchTask Class.

Developers cannot modify or change the behavior of the Search Button.

110

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

111

This is pre-release documentation and is subject to change in future releases.

Back button

See the Navigation, Frames and Pages
topic for additional guidance.

Developers should only implement
Back Button behaviors that navigate
back or dismiss context menus
or modal dialog boxes. All other
implementations are prohibited.

The hardware Back Button is used to navigate back on pages (screens)
within an application or between applications. The application allows the
framework to perform the operation when the button is pressed. Also, the
Back Button can be used to close menus, dialogs, navigate to a previous
page, exit a search operation, or even switch applications. However, the
principal usage is to navigate from the current page to the previous page.

See the Navigation, Frames, and Pages topic for more information about
the page navigation model in Windows Phone 7.

When a user navigates back out of the root page of an application, the
application will terminate.

The Back Button will not work as a backspace key to delete text input.

112

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

113

This is pre-release documentation and is subject to change in future releases.

Developers do not have access to
modify the Power button behavior and
their applications should always be
prepared to receive an obscured event
to pause or terminate after the Power
button is pushed.

The power button has several different behaviors depending on the state
of the phone:

Power button

Phone State Power Button Push Duration Behavior
Powered off Any Boots the phone
Powered on, screen unlocked, screen on < 3 seconds Locks and turns off screen
Powered on, screen locked, screen on < 3 seconds Turns screen off
Powered on, screen locked, screen off < 3 seconds Turns screen on
Any powered on state > 3 seconds and < 8 seconds Turns phone off via software shutdown
Any powered on state > 8 seconds Turns phone off via hardware shutdown

114

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

115

This is pre-release documentation and is subject to change in future releases.

Volume buttons

The hardware Volume Buttons are used to adjust the volume of either the
in-call conversation volume (if a phone call is active), or else the overall
device volume (if there is no active phone call), which includes music,
radio, video, application, ringtone, and system sound volume.

Pressing either Volume Button will expose the volume control, a 93 pixel
tall overlay at the top of the screen and may contain audio transport
controls such as previous and next if there is a media player active. It will
always contain a control to toggle the ringer setting on and off. This con-
trol affects the playback of the system sounds that the user can control in
the Ringtone and Sound settings screen.

If the phone is locked, the Volume Buttons are still active when media is
playing or there is a phone call in progress.

The buttons operate system-wide and volume settings carry through
into the application. This means that developers cannot have volumes set
higher than the user settings or override mute.

Pressing and holding a Volume Button will do a key press repeat and
incrementally increase or decrease the volume depending on the button
pushed.

When a user receives a phone call, touching either Volume Button will
silence the ringtone.

Developers cannot edit the audio transport controls overlay or override
the Volume Buttons behaviors.

Developers can control the volume of the audio stream they provide to
the system, including muting it.

116

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

117

This is pre-release documentation and is subject to change in future releases.

Camera button

The Camera Button is a dual action button supporting full and half button
press modes. When a user does a full button press, the phone will launch
the camera application. If the user does a half button press after the cam-
era application has launched, the auto-focus feature is enabled.

Within the Camera application, pushing the Camera Button will take
a photo when in camera mode or start or stop video capture when in
video mode.

If the user presses and holds the camera button for more than one
second when the device is in stand-by (screen off) or locked, the camera
application will launch.

Applications can programmatically launch the camera application by
calling the CameraCaptureTask Class.

Developers cannot modify or change the behavior of the Camera Button.

118

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

119

This is pre-release documentation and is subject to change in future releases.

Sensors

Every Windows Phone 7 phone contains the following sensors:

 • Accelerometer

 • A-GPS

 • Proximity Sensor

 • Camera

 • Compass

 • Light Sensor

While not every sensor is available to developers since some are system-
reserved, developers should consider each area for applicability to the UI
for their applications.

Additional topics in this guide provide greater detail for each sensor.

120

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

121

This is pre-release documentation and is subject to change in future releases.

Accelerometer

Developers creating applications or
games that require a higher level
of precision and sensitivity from
the accelerometer should calibrate
accelerometer data.

The Windows Phone 7 accelerometer is an electromechanical device
that measures acceleration caused by gravity or external sources to an
accuracy of +/- 5 degrees. This 3D motion sensor provides continuous
information about the forces being applied to the device in the X, Y, and
Z planes.

A Windows Phone can leverage this feature to create sophisticated experi-
ences for the end user by calling managed APIs that are easy and flexible
to use. Developers can offer scenarios such as automatic screen rotation,
tilt-to-scroll, and gaming control within their applications.

122

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

123

This is pre-release documentation and is subject to change in future releases.

A-GPS

A-GPS (assisted global positioning system) is used to determine the
location of the phone and provides information to Location Services
on the phone.

There are no direct UI elements associated with A-GPS, but develop-
ers have access to Location Services in the System.Device.Location
namespace.

124

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

125

This is pre-release documentation and is subject to change in future releases.

Proximity sensor

The Proximity Sensor is used to power off the screen to conserve battery
when an object is detected within 15 mm of the sensor during a phone
call. Phone manufacturers have discretion as to where to place the sensor,
so its location may vary from phone to phone.

The sensor remains active when the phone is being used in speakerphone
mode, so it is possible to accidentally power off the screen if a finger or
object covers the sensor.

Developers do not have access to the Proximity Sensor or its behaviors.

126

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

127

This is pre-release documentation and is subject to change in future releases.

Camera

All Windows Phone 7 phones have a five megapixel or larger camera with
auto-focus and flash, and a 4:3 aspect ratio image sensor.

There are no direct UI elements associated with the Camera, but develop-
ers have access to the Camera in the Microsoft.Phone.Tasks namespace.

128

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

129

This is pre-release documentation and is subject to change in future releases.

Compass

The Compass is used to determine navigation direction relative to the
Earth’s magnetic field.

Developers do not have access to the Compass or its behaviors.

130

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

131

This is pre-release documentation and is subject to change in future releases.

Light sensor

The Light Sensor is used to determine the intensity of light up to 4,000 lux
and helps in automatically adjusting screen brightness. Developers do not
have access to the Light Sensor or its behaviors and there are no UI ele-
ments associated with it.

Image Source: NASA

132

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

133

This is pre-release documentation and is subject to change in future releases.

Output methods

If developers or designers require
precise millimeter sizing for UI
elements, consult the display
specifications provided by original
equipment manufacturers for the
proper pixels to millimeters conversion
factor. See the topic, A Note on Units
– Pixels vs. Millimeters for more
information.

Consult the display specifications
provided by original equipment
manufacturers for screen bit depth.

Windows Phone 7 applications have multiple methods of output:

 1) Audio output jack

 2) On-device speaker

 3) On-device screen

 4) Vibration

Developers should consider each area for applicability to the UI for their
applications.

All Windows Phone 7 phones will have at least 16-bit (5 red, 6 green, 5
blue) WVGA screens at 800 x 480 pixel resolution, no matter the screen
size. Phone manufacturers have the option to use higher bit depth
screens, but there is no programmatic way to query for bit depth.

The vibration unit can be turned on or off by the user in the Ringtones
and Sounds preferences and this setting cannot be overridden.

1

2

3

4

134

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0

135

This is pre-release documentation and is subject to change in future releases.

FM radio

Use the base Silverlight controls in the
Windows Phone Developer Tools to
build application UIs.

Applications cannot lock the frequency
or region of the FM radio tuner;
therefore, developers should poll the
API prior to displaying the UI to refresh
the frequency or region values of the
tuner in case another application has
changed the values.

All Windows Phone 7 phones have a built-in FM radio tuner. Develop-
ers will need to create the UI for the service, as there are no built-in UI
components.

136

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

137Windows phone application interface controls

If you need to create your own user
actionable control, please adhere to
the general Metro styling guidance
as discussed in the first section of this
guide, Philosophy of the UI and Design.

Use the Windows Phone Design
Templates as visual guides for creating
custom controls that mimic system
controls.

The Silverlight® UI framework delivered on Windows Phone 7 is the next
step in the evolution of Silverlight and enables a new class of mobile
design experiences. Silverlight harnesses the power of .NET and includes
numerous controls, rich layout, and styling. It also supports vector-based
graphics and animation APIs. Select Silverlight controls have been themed
with a new exciting look explicitly for the Windows Phone 7 platform. De-
velopers can use their previous Silverlight and .NET development experi-
ence to facilitate working with this mobile control set and apply it to their
Windows Phone 7 applications.

The following topics list the Silverlight controls in the Windows Phone De-
veloper Tools, including controls that do not have UI components but can
affect other parts of the UI. Refer to specific control topics for a detailed
overview and guidance for each. This guide only focuses on controls that
impact the phone UI and does not exhaustively cover every Silverlight
control available in the Windows Phone Developer Tools, as UI guidance
exists elsewhere for those controls.

User set system theming flows down automatically into all controls avail-
able in the Windows Phone Developer Tools.

Developers may also create their own controls as needed and these con-
trols may replicate system controls that are not available as a part of the
Windows Phone Developer Tools. See the Visual Design Resources topic
for graphic design templates for system controls that developers may wish
to mimic.

138

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

139

Do not hard-code the border width.
Use the phone border width to support
screen scaling.

Provides a border, background, or both to another control. A border can
contain only one child element.

Border

button

140

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

141

Buttons support the tap gesture.

If using text, buttons should never
include more than two words.

Text should be concise and typically a
verb.

When used in dialog boxes, “OK” or
positive actions should be on the left,
and “Cancel” or negative actions on the
right.

A button initiates an action when a user taps on it. The shape is usually
rectangular and the standard layout allows for either text or an image
to be displayed.

Buttons support rest, press, and disabled states.

There is no visible focus state.

Push button

142

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

143

Canvas uses a pixel-based layout
and can provide better performance
than using the grid control for deeply
embedded or nested controls in layout
passes for applications that do not
change orientations. Use the grid
control if the application frame needs
to grow, shrink, or rotate.

Provides a surface to display child elements at specific coordinates in the
canvas.

Canvas

144

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

145

Even though the control can support
multiple lines, limit text to either a
one or two line format for design
consistency.

If there are several choices to present
to a user, consider using a scroll viewer
and adding a stack panel.

Microsoft does not recommend the
use of the indeterminate state because
the user could be confused about
which of the underlying property items
is actually checked or unchecked. A
more appropriate alternative is to map
the data sources for that checkbox to
separate checkboxes or use a multi-
selection list, particularly if a dynamic
data set is used.

Check boxes are used to define a binary state and can be used in groups
to display multiple choices from which the user can select one or more
choices. A user can either tap a check box or the accompanying text to
select an option.

The control supports an indeterminate state that can be used to com-
municate checked and unchecked status simultaneously for a number of
underlying items.

Check boxes support rest, press, and disabled states for both selected
and un-selected settings.

There is no visible focus state.

Check box

146

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

147

Represents a control with a single piece of content of any type. Many
controls derive from Content Control and can contain objects, such as
a Button.

Content control

148

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

149

Displays the content of a Content Presenter.

Content presenter

150

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

151

Using the grid control for deeply
embedded or nested controls in layout
passes for applications that do not
change orientations or grow or shrink
the viewable area can lead to degraded
performance. Use the canvas control if
the application frame does not need to
grow, shrink, or rotate.

Provides a surface that is composed of rows and columns to display child
elements. You define the rows and columns for a grid, then, assign objects
to a specific row or column in the grid. You can optionally display gridlines.

Grid

152

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

153

Only use the Hyperlink control for
navigation, not to trigger events, or
hide or show additional text. To trigger
events, use a button control instead.

Avoid placing hyperlinks close to each
other. Doing so may make it difficult
for the user to select an individual link
without zooming.

Hyperlink controls should only use a
disabled state if the state is temporary,
such as other system processes are
occurring, or if the state can be
changed to enabled by a user action.

A link that is disabled and cannot be
enabled by user action should not be
displayed.

The hyperlink control allows you to embed hypertext links in a page and
specify a navigation target.

The control supports rest, press, and disabled states.

There is no visible focus state.

Hyperlink

154

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

155

The image control displays an image in PNG or JPEG format and displays
indexed images with 1, 4, or 8 bit color-depth or true color images with 24
or 32 bit color-depth.

Image

156

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

157

InkPresenter does not support
handwriting recognition.

InkPresenter provides a primitive drawing surface to collect strokes or
Bézier curves within a canvas control.

InkPresenter

158

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

159

A ListBox control contains a collection of items. You can populate the
control by binding it to a data source or displaying unbound items. The
ListBox is an items control, which means that you can populate it with
items that contain text or other controls.

ListBox

160

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

161

Do not use this control for sound
effects in your application; use the XNA
Framework SoundEffect API instead or
your application will fail certification.
This is because the MediaElement will
interrupt and halt any audio that is
playing in the background.

Do use this control for full-screen video
playback, or in other situations where
background audio would be halted.

Only one MediaElement can be active
at a time.

A MediaElement control provides a rectangular region that can display
video on its surface, or plays audio if no video is present.

MediaElement

162

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

163

Developers must implement gestures
when using this control because it does
not have any gesture support built-in.

Multi Scale Image enables users to open a multi-resolution image that can
be scaled and repositioned for detailed viewing. By default, an image that
is loaded by Multi Scale Image zooms (expands) when first loaded. This
behavior can be disabled by setting the UseSprings property to false.

Multi scale image

164

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

165Panorama

Microsoft will provide a control
and design template to support
building Panoramas at a later date.
Microsoft recommends that designers
and developers wait to implement
Panoramas until final guidance is
available and to use the following
information for planning purposes
only.

For Panoramas:

Use either a single color background
or an image that spans the entire
panorama. If you decide to use an
image, any UI image type that is
supported by Silverlight is acceptable,
but JPEGs are recommended, as they
generally have smaller file sizes than
other formats.

You can use multiple images as a
background, but you should note that
only one image should be displayed at
any given time.

Background images should be between
480 x 800 pixels and 1024 x 800
pixels (width x height) to ensure good
performance, minimal load time, and
no scaling.

Use a 16 x 9 aspect ratio for a
panorama application that has four
sections.

Use a transparent black or white filter
to aid text legibility.

Use a rate of motion that is relative
to the panning gesture, which is
determined by the total width of the
top content layer relative to the width
of the background image.

Panorama applications are a part of the core Windows Phone OS 7.0
visual experience. Unlike standard applications that are designed to fit
within the confines of the phone screen, these applications offer a unique
way to view controls, data, and services by using a long horizontal canvas
that extends beyond the confines of the screen. These inherently dynamic
applications use layered animations and content so that layers smoothly
pan at different speeds, similar to parallax effects.

Thumbnails are a main element of the panoramic view. They link to con-
tent or media that is consumed outside of the panoramic experience.

Elements of a panoramic application serve as the starting point for more
detailed experiences. The element flow example is not indicative of plat-
form functionality, but rather the end-user experience. As an example,
while an application that is launched from a panorama application might
be what the end-user sees; the launched application is actually just a dif-
ferent view of the same panorama application.

The user interface consists of layer types that operate with their own inde-
pendent motion logic: a background image, a panorama title, panorama
section titles, and panorama sections. Thumbnails complete the experi-
ence and are a main element of the panoramic view. They link to content
or media that is consumed outside of the panoramic experience.

The background image is the lowest layer and is meant to give the
panorama its rich magazine-like feel. Usually a full-bleed image, the
background is potentially the most visual part of the application.

The panorama title is the title of the overall panorama application. It is
meant to let the user identify the application and should be visible no
matter how they enter the application.

Panorama sections are the component of the panoramic application that
encapsulates other controls and content. Panorama sections move at the
same rate as the finger pan or flick.

A panorama section title is optional for any given panorama section.

166

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

167

Wrap off and then back onto the visible
area when the user pans beyond the
width of the image.

For Panorama Titles:

Use either plain text or images, such as
a logo, for the panorama title. You can
also use multiple elements, such as a
logo and text (or other UI elements).

Ensure that the font or image
color for the title works across the
entire background and that it is not
dependent on the background image
for visibility. Use the system fonts
and styles unless there is a need for a
specific branded experience that uses a
different font, size or color.

Use the same panorama title for the
launch tile in Start for consistency.

Avoid animating the panorama title or
dynamically changing its size.

Use a rate of motion for the panorama
title that is slow relative to the topmost
content layer, and slower than the
background art.

For Panorama Section Titles:

Use plain text for panorama section
titles. Alternatively, you can use
images. You can use multiple elements,
such as an image and text (or other
UIElements).

Ensure that the panorama section title
is not dependent on the background
art.

Avoid animated panorama section
titles because the title will be moving.

Panorama

Panorama168

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

169

Span the entire panorama section
with panorama section titles, even if
multiple controls are present.

Animate panorama section titles off
the screen when a user navigates to a
new section.

A panorama section’s title should act
differently depending on whether the
section’s width is greater than or less
than the width of the screen. If the
section’s width is greater, there should
be a horizontal animation. That is, the
title should not stay in the top left of
the section, but rather it should move
at a different speed along the top while
the panorama is moving. Under these
circumstances, there should not be
vertical scrolling. Alternatively, if the
section’s width is less than the screen
width, the title should always be set to
the top left of the section. Under these
circumstances, there should not be
any horizontal animation and, the title
should move along with the content.

For Panorama Sections:

Vertical scrolling through a list or grid
in panorama sections is acceptable as
long as it is within the confines of the
section and is not in parallel with a
horizontal scroll.

Animate panorama sections off the
screen when a user navigates to a new
section.

Consider hiding panorama sections
until they have content to display.

Panorama170

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

171

For thumbnails, use cropped images
that highlight an identifiable subject
rather than an entire image. If the
image is not identifiable without text,
up to two lines of text can be used to
identify the content.

172

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

173

The Password Box control displays content and allows the user to type or
edit the contents. An entered character appears briefly and is obfuscated
to a bullet when the next character is entered or after two seconds.

The on-screen keyboard appears automatically when focus is set in the
password box unless the phone has a hardware keyboard.

Password box

To add an input scope for an on-screen
keyboard, configure the input scope
property on the password box control.

Gestures supported:

 • Tap – for focus and selection

 • Tap and hold – for precise
 caret insertion

Is explias ini dolo beatis incto cullis deles
untus sam et duciis exceptam adissit, quam
veliqui busdae venes sam harcite cernatum
faceser ionseque dolupta vendam nam
quatiberovit faceped maio volentium debis
modissi tem nos rerum, et aborehenisci
audionsed quam

174

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

175Pivot

Microsoft will provide a control and
design template to support building
pivot experiences at a later date.
Microsoft recommends that designers
and developers wait to implement
pivot experiences until final guidance
is available and to use the following
information for planning purposes only.

Never place a pivot control inside of
another pivot control.

Never place a pivot control inside of
a panorama control.

Applications should minimize the
number of pivot pages. Users can
become lost if they jump from pivot
page to pivot page. Use pivot controls
sparingly and limit the use of pivot
pages to scenarios where it
is appropriate for the experience.

Pivot pages should not be used for
task flow. Different pages should
flow seamlessly in terms of look and
feel and user activity should not be
changed drastically.

Pivot pages must not override the
horizontal pan and flick functionality as
it collides with the interaction design of
the pivot control.

There is no limit on the text length of
the pivot header. The amount of text
that is displayed is constrained by the
width of the pivot control.

The pivot header is a fixed height and
cannot be changed.

The pivot control should only be used
to display items or data of similar type.

An empty pivot page should only be
removed when there is no chance that
additional information can be added
through user action.

A pivot control provides a quick way to manage views or pages within the
application. This control can be used for filtering large datasets, view-
ing multiple data sets, or switching application views. The control places
individual views horizontally next to each other, and manages the left and
right navigation. Flicking or panning horizontally on the page cycles the
pivot functionality.

The content of the page inside the pivot control is defined by the applica-
tion.

176

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

177

The use of a progress bar is optional,
but consider adding one if there are
wait states in your application that do
not require user interaction.

The progress bar is a control that indicates the progress of an operation.
You can use the control to show generic progress, or progress that changes
according to a value.

It supports a marquee (indeterminate) mode.

Progress bar

178

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

179

The tap gesture switches between
selected and un-selected settings.

Radio button description text can wrap
to a second line, but try to use either a
single or double-line format for design
consistency.

Use a scroll panel instead if there are
several choices for the user.

A radio button is used to represent a set of related, but mutually exclusive
choices. The user taps on the radio button description text or glyph to
select the control. Only one option may be selected at a time.

The radio button control implements rest, press, and disabled states for
both selected and un-selected settings.

There is no visible focus state.

Radio button

180

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

181

The Scroll Viewer supports pan and
flick gestures.

The scroll viewer allows users to navigate to content that is not directly
viewable within the frame of the application, such as a long section of text
or image.

When scrolling, scroll indicators will fade in as the user pans or flicks and
fade out after a second at the end of the gesture, but the scroll indicators
are non-user actionable.

Scroll viewer

182

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

183

Applications can use either a horizontal
or vertical slider, but a horizontal slider
is recommended.

A slider control is used to set a value from a continuous range of data
such as volume or brightness levels. The slider has a minimum and
a maximum increment value.

Slider

184

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

185Stack panel

Padding may be required to prevent
crowding or overlapping when placing
text that is not part of a control in a
StackPanel.

Provides a surface to display child elements in a line; either horizontally or
vertically.

186

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

187Text block

Always use one of the Windows Phone
OS 7.0 predefined text styles instead
of hard coding font size, color, weight,
or name to support future screen
resolutions or sizes.

The Text Block displays a fixed amount of text and is used to label con-
trols or control groups. The text block stays the same for all states of the
related control and supports word wrapping.

188

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

189

The Text Box control displays content and allows the user to type or edit
the contents.

Text boxes may display a single or multiple lines. Multiple line text boxes
will wrap text to the size of the control.

Text box

Text boxes may be set to read only, but
should generally be used for editable
text.

The on-screen keyboard appears
automatically when focus is set in
the text box unless the phone has a
hardware keyboard.

Gestures supported:

 • Tap – for focus and selection

 • Tap and hold – for precise
 caret insertion

190

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

191User interface text guidelines

Review the Voice and Tone,
Terminology, Capitalization, and
Punctuation sections for specific
guidance in those areas.

The Metro design elevates text to a primary UI element and having in-
formed, cleaner, and friendlier text for users will help applications parallel
the native Windows Phone 7 text format.

Using the Metro style in voice and tone, terminology, capitalization, and
punctuation will add an extra layer of fit and finish to any application and
can significantly enhance usability of the application by the user.

Lorum ipsum
Alit modit eat. Sa doloraes dolor anis maiosam
inventorum et aut eium quistius explitiis dit
am harchici utent adite comnihilis eiusae ma
pa dolorerfere, sitatem hil istione stisquae et
illacepudis isto tet molupienet quis sit, tem ea
volupta speleni stiusan dentus endae dem quia
secessed ene etusa poria si offic tem fugit, nest,
tem aut vollaut vendiat volut aute pos vollorest
quo od que nam delibea tumquibus none
vendestrum harum sit que doloreium quid et
occum dolorectinis eniminu stinvende dolest,
sere, aliquibus doluptatquia et lacia voluptat
aut lamus dolore dolutatem sed et iligent es
seditam sum erferit, tecabo.

192

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

193Text guidelines – voice and tone

Do not use computerese – jargon,
hexadecimal error codes, or text that
assumes computer knowledge.

Use an authentic and clear voice, and
reflect the language that is used by the
audience.

Use friendly, lighthearted, and
empathic tones. Never use an angry or
mechanical tone in the application.

If an application has many text strings,
consider consulting with a technical
writer or editor to review the text
strings.

Many users consider text displayed on computers to be another language
called computerese, a jargon-filled, soulless, completely impenetrable for-
eign language that torments them by hindering their ability to complete
tasks and asks nonsensical questions in dialog boxes.

Windows Phone 7 banishes computerese entirely and developers should
as well. The Windows Phone 7 voice and tone should be human, clear and
consistent.

Voice refers to the personality within the text. For example, the voice of
the writer would be their overall personality expressed by what they write.

Tone is the overall mood of the text such as happy or angry. The Windows
Phone 7 tone is friendly, lighthearted, and empathic.

One method to check if text has the proper voice and tone would be to
see if it sounds like a friend assisting another friend with something on the
phone. An example would be helping them understand an error mes-
sage that appears in the application. A developer shouldn’t offer a rigid,
uninformative response when trying to explain an issue such as, “Error
Code: 4B696C626F.” Many people could be confused or frustrated by that
message, as it provides no context or potential solution. However, some-
thing such as, “There is some info missing here. Please enter your name
in the text box to move to the next page,” is clear, friendly and provides a
helpful suggestion.

It is imperative to give users a meaningful response in a casual, com-
prehensible manner. Help them fix the problem in a way that they can
understand.

Consider the string, “Synchronize the phone device.” It sounds mechani-
cal and stilted. Instead, “Sync your phone,” sounds much more like what
someone would tell a friend to do.

Another example is, “Schedule a calendar event for tomorrow through
Outlook.” It is neither friendly nor representative of how a friend would
speak. An alternative could be “Set up an appointment for tomorrow in
Outlook.”

194

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

195Text guidelines – capitalization

Maintain consistent capitalization
practices to prevent a disjointed or
jagged reading experience.

Use lowercase for:

• Page titles

• List titles

• List group titles

• Push button control text or words
 that function as commands

• List items

• Example text that appears in search
 boxes

• Link controls in the middle of a
 sentence

Use sentence caps for:

• Check box and radio button labels

• Progress indicators

• Status, notification, and
 explanatory text

• Toggle switches

Use all caps for:

• Application titles

• Dates and times

• AM or PM

Windows Phone 7 displays text in lowercase and all caps layouts in many
places, but also uses title caps, where the first and last words of the phrase
and all words in between are capitalized, and sentence caps, where only
the first word of a sentence is capitalized.

Title caps exceptions are articles (a, an, the), coordinating conjunctions
(and, but, for, not, or, so, yet), and prepositions with four or fewer letters
(at, for, in, into). An example would be “Neon Tetras in My Fish Tank.”

Sentence caps exceptions are words that would be normally capitalized in
text such as proper nouns or feature names. An example would be “I want
to visit Mt. Rainier in the springtime.”

Alit modit eat. Sa doloraes dolor anis
maiosam inventorum et aut eium quistius
explitiis dit am harchici utent adite comnihilis
eiusae ma pa dolorerfere, sitatem hil istione
stisquae et illacepudis isto tet molupienet
quis sit, tem ea volupta speleni stiusan dentus
endae dem quia secessed ene etusa poria si
offic tem fugit, nest, tem aut vollaut vendiat
volut aute pos vollorest quo od que nam
delibea tumquibus none vendestrum harum
sit que doloreium quid et occum dolorectinis
eniminu stinvende dolest, sere, aliquibus
doluptatquia et lacia voluptat aut lamus
dolore dolutatem doluptatur arcipidunt adictur
sincimos eati audignis nim dolorita coribus

196

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

197Text guidelines – punctuation

Maintain consistent punctuation
to prevent the user from becoming
confused, clarify ambiguous text, and
provide direct emphasis as needed.

The following table shows the standard
rules of punctuation for UI elements.

Reading UI text that has no punctuation or poor punctuation can lead to
severe user confusion and frustration. Punctuation helps to clarify ambig-
uous sentences, places emphasis where it needs it, and provide hints
to the reader about the context of the words they read.

Compare “Coconuts healthy organic and delicious” to “Coconuts: healthy,
organic, and delicious.” and “Slowly quietly unbuckle it cables kick” to
“Slowly & quietly unbuckle it – cables kick!” In these examples, punctua-
tion reveals a tasty snack hidden in nonsense and emphasizes a potential
danger.

Punctuation Mark Usage Guidelines
Ampersand (&) Okay to use in settings or menu lists, for example: Date & Time; Clocks & Alarms.
Colon (:) • Do not use a colon at the end of labels for controls such as text boxes, drop-down

lists, and progress bars.
• Do not use a colon when the text box or drop-down list is embedded in a sentence or
when the drop-down list appears in a main window.
• Do not use a colon at the end of group headings or column headings.
• Use a colon to introduce numbers or other variables, for example: Percent Down-
loaded: XX%

Ellipsis (...) • Use an ellipsis in progress indicator labels to indicate a continuing action, for example,
when the user is downloading a file. Even if there is a visual of a progress indicator, you
will still want to use the ellipsis.
• Do not use an ellipsis in headings.
• Do not use an ellipsis in button labels.

End punctuation (. ? !) • Use end punctuation only in instructional text in the UI. Do not use end punctuation if
instructional text appears in a title bar or button.
• Do not use a period at the end of option or check box text labels, even if the label is a
sentence.
• Separate sentences with one space after the ending punctuation, not with two spaces.
• End a question with a question mark. But in general, avoid phrasing labels as ques-
tions.
• It is okay to use a question mark at the end of a title for an error message or dialog
box.

Parenthesis () Avoid using a parenthesis in the UI if possible, but use a parenthesis if you need to
include an acronym or other short piece of information.

... & . ? ! ()

198

Windows® Phone 7 UI Design and Interaction Guide – July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases.

199Miscellaneous

Windows Phone 7 has other hardware features available not previously
mentioned, including:

 • Bluetooth

 • Camera flash

 • Camera LED

 • Micro SD

 • Micro USB

 • Wi-fi

All of these features have no direct UI components and developers will
need to create custom UI elements if they need to represent them within
their application.

